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Chemical and biological activity in three-dimensional flows
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We study the dynamics of active particles advected by three-dimeng@Dpabpen incompressible flows,
both analytically and numerically. We find that 3D reactive flows have fundamentally different dynamical
features from those in 2D systems. In particular, we show that the reaction’s productivity per reaction step can
be enhanced, with respect to the 2D case, while the productivity per unit time in some 3D flows goes to zero
in the limit of high mixing rates, in contrast to the 2D behavior, in which the productivity goes to a finite
constant. These theoretical predictions are validated by numerical simulations on a generic map model.
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In the last few years, there has been great interest in theolume is preserved, there are two nondegenerate cases of
dynamics of active particles advected by open chaotic flowsiyperbolic 3D flows: those having one unstable and two
[1]. Activity includes chemical activity, when reacting mol- stable directiongwe call these “type If, and those with two
ecules are consumed in a chemical process to yield producnstable and one stable directiofvge call these “type Iy.
molecules; and also biological activity, when, for instance, alo investigate the reaction dynamics in 3D flows, we de-
unicellular organism makes copies of itself after taking invelop an analytic model. We show that the reacting particles
food. There is a host of important physical and environmenconcentrate along the chaotic saddle’s unstable manifold. For
tal processes involving active flows, including the depletionscales larger than the particle size, the distribution looks like
of the ozone layef2], the dynamics of pollutants in the @ fractal, with a fractal dimension equal to that of the un-
atmospherd3], plankton population dynamics in the ocean Stable manifold. We show that the two types of dynamics
[4,5], early life evolution[6], and others. All these can be (type I 'and type Ij correspond to very distinct types of re-
considered open systems, because the region where activgft'on dynamics. In particular, our theory predicts that the

takes placgthe interaction regionis much smaller than the Production term in the reaction equation in the continuum
place gion limit is proportional toA?, whereA is the amount of reactant,

whole system. : . ; ’
The advection of particles by open chaotic flows displaysand v is a coefficient that depends on the fractal dimension

) i . of the unstable set. For type | flows, we show thatan be
the_ phenome_nor! of chaotic _scatten[?gS]. A chaotic scat- ositive, whereas in the 2D case it is always negative. In this
tering dynamics is characterized by the presence of a fract

) : . _ ) ase, the reaction kinetics of the 3D flow is qualitatively
invariant set of nonescaping unstable orlils This setis igerent from that of the 2D flow. In particular, we show that

called the chaotic saddle. It is known that the presence of g reaction’s productivitper reaction stegan be enhanced
chaotic saddle in the advection dynamics has dramatic efy type | flows with respect to the 2D case, while the pro-
fects on the reactive dynamics. These and other studies up Huctivity per unit timein some 3D flows goes to zero in the
now refer to two-dimensiona2D) flows. However, actual |imit of high mixing rates, in contrast to the 2D behavior, in
flows are three dimensional, and only under artificial restricyyhich the productivity goes to a finite constant. We generally
tions are they reasonably approximated by two-dimensionging that within the 3D case type | and type Il flows have
models. ThEFEfore, the full three-dimensional dynamiCS mus&ery distinct reaction dynamicsl with type 11 flows behaving
be taken into account in order to successfully understangh most respects like 2D flows, whereas type | flows display
activity in realistic flows[15]. many unusual features. These results must be taken into ac-

In this article, we develop a theory for the dynamics of count when studying the active dynamics of more realistic
reactive particles in open hyperboliand, hence, genelic gystems.
three-dimensional flows. We find striking differences from = e first present results on the purely advective dynamics
the corresponding results for 2D flows, showing that the 3Duf 4 3D flow, without considering activity for the time being.
character of the dynamics must not be disregarded. To simye study the case of a time-periodic flow, the dynamics of
plify the analysis of the different dynamical features found inwhich can be reduced to a 3D stroboscopic map, as is usually
the 3D flows, we assume the flow to be periodic in time. Ingone in dynamical systems. In order that our results do not
this case, the dynamics can be reduced to a 3D volumejepend on the particularities of the chosen model, we choose
preserving map with escapgsince we are dealing with open  to focus on a generic hyperbolic open volume-preserving 3D
ﬂOWS). Because of its odd dimenSionality, the number Ofmap, which can be thought of as a genera“zaﬁon of the
stable directions of the dynamics is different from the num-ye|l-known 2D open baker map. The structural stability of
ber of unstable ones: such maps are not Hamiltonian, evegur map rigorously guarantees that our results are genetic,
though they preserve the thl’ee-dimensiona| VO|ume. Sincﬁ)r a |arge class of 3D f|ow$3D V0|ume_preserving maps

for closed systems have been studied bef@f). The map
is defined in the unikyzcube, and its action is shown in Fig.
*Email address: amoura@if.usp.br 1(a). We denote the map hy1. One iteration ofM consists
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FIG. 1. (a) lllustration of the action of one
iteration of mapM on the unit cubéthe drawing
is not to scalg (b) Surviving points after two
iterations of the map\1, for A=0.35, with initial
conditions chosen randomly in the culp®. Same
as(a), but for the inverse map1~1. (d) Intersec-

2 tion with a horizontal planéz=cons} of the set
of surviving points after two iterations of1.
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of two actions. First, thec andy directions are uniformly From Eq.(1) [see Fig. 1a)], the stable manifold ofM is

contracted by a factax, with A <1/2, while thez direction  a Cantor set of planes parallel to tkg plane, and the un-
undergoes an expansion by a factok? thereby conserving stable manifold is a Cantor set of vertical segments. We can
volume. By this transformation, the unit cube turns into avisualize these manifolds by iteratingyt forward a given
long thin parallelepiped with its long axis along theaxis. = number of times for many initial conditions chosen randomly
Second, four pieces with unit height of this parallelepipedwithin the unit cube and plotting the points that have not
are selected and put in the four corners of the aiglee Fig. escaped. Conversely, iterating! backward gives a picture
1). The pieces of the parallelepiped that are not selected am@ the stable manifold of\1. The results are shown in Figs.
discarded, and considered to have escaped. Formedlys  1(b) and Xc).

written as Let us consider now the unstable manifold b, de-
picted in Fig. 1b). Since it is made up of vertical segments,

= + . . . .
Xne1 = M + By, and since the expansion and contraction rates are uniform,

M3 Yns1 =AYt By, (1)  we can restrict ourselves to the intersection of the unstable
Zoi1= Z/N?+ By, manifold with a horizontal plane. This is depicted in Fig.
N 1(d). In the limit of an infinite number of iterations, a well-
where the additive factor8 depend on the value a; known Cantor set in the plane is form¢fl], with fractal
Bx=B,=0 if 0=z,<1, (box-counting dimension given byl=-2In 2/In\. The un-
stable set is the product of this set and a one-dimensional
By=1-\,B,=0,B,=-C if C<z,<C+1, segment, with dimension
B,=1-A, B,=0,B,=-C if 2C=<2z,<2C+1, dy=1-2In2/Inx. (3

Note thatd,, is also the dimension of thetablemanifold of
Bx=By=1-\,B,=-3C if 3C=<7<3C+1, (2) M Asimilar reasoning can be applied to the stable mani-
fold: it is the product of a Cantor set on a vertical line with a
plane. We findds=2-In2/In\. The chaotic saddle is the
intersection of the stable and unstable manifolds, and its di-

. . mension isdg,qq=—3 In 2/In\. We see from the above that
di Th? map M described t_)y Eq(l) _has two contracting .7 dg, in contrast to the 2D case. Furthermodg,and d,,
irections and one expanding direction, and is therefore of" .
type |. We observe that for the inverse mag™, stable satisfy
directions turn into unstable ones, and vice versa. Therefore, 1<d.<3 2<d.<3. (4)
M has one stable and two unstable directions, and it is of ! ’ s
type Il. We thus conveniently handle the two generic types ofVe note that the structure of the stable and unstable mani-
hyperbolic 3D maps with one single map and its inverse. folds of the two types of flow for a generic open 3D volume-

with C=(2\)"2. We could have defined the map more gener
ally, with two distinct contraction factors, and A,. The
general conclusions would be the same.
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preserving magand not only for mag1)] is topologically When reactions occur, the filaments are thickened by ap-
similar to that shown in Fig. 1. Also, the inequalitigd hold  proximately o, yielding eg(n+1)=¢,(n)+ac, wherea is a
in general. geometric factor that takes the curvature and overlapping of

~ We observe from Eq4) that in type Il flows the dimen-  the filaments into account. We are assuming that no new
sion of the stable manifolfvhich isd, in Eq. (4)] may be  reacting particles are entering the system from the outside,
less than 2. In this case, the stable manifold has generically gnq that the only source of new particles is the reaction itself.
null intersection with a one-dimensional curve, and thus &Jsing this relation together with Eq5), we can write an

1D scattering functiorisuch as the escape timis smooth, . ati0n for the discrete time evolution of the volume:
even though there is a fractal invariant setd}f>2, on the

other hand, a typical scattering function has a fractal set of A(n+1) =e[A(nN)]YCW + g3, (6)

singularities[9]. This is a phenomenon analogous to the one 3y . _ o

found in Hamiltonian chaotic scattering in three-degree-of With g=aH ™"/ By requiring A(n+1)=A,(n)=A,, we

freedom system§l12,13. The transition point, at whickl,  find the equilibrium value oA:

=2, is given byh=\.=1/4. If thefluid is of type Il, how- g 3-d,

ever, this transition does not occur. A = [ }
We now consider what happens when the advected par- 1

ticles are active. We first derive an analytical model valid for

general hyperbolic 3D flows, and then we will use the mapy

(1) to corroborate our results. Reactions are implemented b

a discretization of space, followind.4]. We initially choose

a regionR of space that contains the chaotic saddle, an ) - D . . L

WhiC% we consiger to be the interaction region. We then parpred'CtS thaN~.‘T . This is confirmed by numerical fitting

tition R into cubic cells of sizeo, which physically repre- ©Of the data of Fig. @. _ ,

sents the reaction range or the particle size. Each of the ad- [N the continuous limit,A is a continuous function of

vected active particles is located in one of the cells. For $Pace and time. By Taylor-expanding E§), we get a dif-

given particle in an arbitrary position iR, we consider it to ~ ferential equation fo, the reaction kinetic equation

be localized at the center of the cell that contains it. When it —

evolves in time through a 3D map, this particle is mapped to AAVE= = kA +g(3 ~ dyuph’, ®)

another cell. If the mapping takes a particle outsRjét is  where the coefficient of the power law ig=(2-d,)/(3

considered to have escaped. If two particles are mapped toq,). The first term in Eq(8) is due to the escape, and the

the same cell, only one is considered to rem@nales-  second term is the source term, which depends on the geom-

cence. After advection, the particles undergo a sudden réaCairy of the unstable manifold. ,> 2, theny<0, whereas

tion. We assume that all particles undergo a catalytic reags 4 <5 ,,>0. In the two-dimensional case, only the case
tion, which acts as an infection: if a given cell contains a

! . . : . v<0 is possible, and the source term in E8) is singular
particle before the reaction, all neighboring cells will alsoand diverges foA— 0, giving rise to the so-called dynami-

contain particles after the reaction. If an infected cell already . . . 4 i
has a particle, it remains unaltered. The total dynamics of thgal catalysis|14). The casey>0 is uniquely three dimen

system is thus composed of advection and reaction. To full ional, with no (_:ounterpart in 2D flows. In this case the

define the dynamics, we have to specify the reaction ime S0Urc€ term van_lshes @-0. In ihe case Of. our maf),

The reaction rate is given by £/We assumer either to be e Crossing point between the two behaviors is\ah.

an integem (the map is iteratech times before the reaction =1/4, thesame at which scattering functions 8f* be-

takes placgor to take values of the form i (reaction takes COmMe fractal. This transition can be L_mderstood from the be-

placem times in each iteration The continuous time limitis havior of the area of the two-dimensional boundary separat-

obtained by lettings, 7— 0 while keeping the reaction ve- ing the region filled with particles from the region devoid of

locity vg=0c/ 7 finite. particles. This area determines the efficiency of the dynami-
We consider first type | flows, with one unstable direction.cal catalysis. It can be shown that in the limitAs-0 this

Let Ag(n) denote the volume of cells occupied by reactingarea vanishes whem, <2, and it diverges whed,> 2.

particles right after thenth reaction. Similarly,A,(n) is the To understand better the consequences of this transition

reactants’ volume right before tiia+1)th reaction. They are from y<<0 to y>0, we turn our attention to the productiéh

related byA (n)=eAy(n), where v=«r is the decay rate, Per reaction step, defined as the difference betw&gn

and « is the escape rate by advection. Bet, « is given by ~ +1) andA,(n), after dynamical equilibrium is reached. It is

e *=4)\2 Due to the stretching along the unstable directionstraightforward to show the=(e"-1)A_[14]. In Fig. 2Ab),

the particles rapidly accumulate into filaments about thehe dependence oP on v is plotted for bothd,<2 and

Cantor set of curves that makes up the unstable manifoldd,>2. For v<<1, from Taylor expansion, we find thd&

The volumeA is given in terms of the average widthof the ~ scales as

filaments by

— o 7
ev/(3—du) _ ( )
From Eq.(7) we see thal\, scales witho as A, ~ o°~%,
verify this prediction, we simulate the advection-reaction
&ynamics of magl). Figure Za) shows the number of par-
dicles N as a function ofo for one value of\. Equation(7)

P~ %2, (9

= 3-d,

AL =H e 7, © From the above, in the limiv—0, or equivalently forr
where the same notational conventions usedifapld for e, — 0 (high reaction ratg P— 0 if d,>2, andP —« if d,<2.
and H is the Hausdorff measure of the unstable manifoldThus,d,=2 separates two very different dynamical regimes.
[11]. We emphasize that this occurs only in 3D flows.
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107 o~ FIG. 2. (@ NumberN of occu-
o 41 pied cells in the equilibrium distri-
107 f bution as a function of the inverse
7 | of the grid sizes, for A=0.35;
> 10° 4 B 21\ d <2 from the slope we get a dimension
a : d,=2.31+0.01, which agrees with
10° 5 —— the theoretical valuel,=2.32 ob-
///d':?’f/ tained from Eqgs(3). (b) Plot of
10° 4 : : 0 u ' ' the v-dependent part of the theo-
1000 10000 0 2 4 retical productionP, for A=0.15
(@ 1/ (b) v (upper curvg and A=0.35 (lower
curve. (c¢) Production obtained
0.006 from simulation, as a function of
0.005 . v, for A=0.35, that is, ford,>2;
0.004 the slope gives P~ 10-35£0.02
which compares well with the the-
& 0.003 10" 1 ' - oretical value 0.32 of the coeffi-
' e cient, from Egs.(3) and (9). (d)
Same agc), with A=0.15 andd,
0.002 / =1.73<2; the slope gives a power
. . law with a coefficient
, . , —0.23+0.04, which is close to the
0.01 0.1 0.1 theoretical value of —-0.27.
() v (d) v
We verified Eq.(9) through simulation, as is shown in 200Kk \7 _
Figs. 2c) (for d,>2) and 2d) (for d,<2), whereP is cal- Q= (%) (2 In27llrzin g (12

culated for several values of for the map(1). The power-
law relation predicted by Eq9) is verified quantitatively, to  where n=2«/(x+21In 2). In the limit of high escape rate
within numerical errors. There is thus an enhancement of théx— ), we get
reaction’s productivity per reaction stepas- 0, which is an _

_ / ! S Q— (2gvR)?k™L. (13
exclusively three-dimensional phenomenon, and which is not R

found in 2D flows. Thus, ask— o, the production in unit time decreases to zero

The same derivation can be applied, with practically noas 1/, in the case of a type | 3D flowith two contracting
changes, to type Il flows. Type Il flows, however, have angjrections.

unstable manifold dimension which is aIWayS greater than 2 In the case of 2D ﬂOWS, instead of E@_O) we have the

[from Eq.(4)] and therefore behave like 2D flows. ~ following equation for the production per unit time:
Another important quantity is the productiviy per unit ot 41
time, which is the amount of new reactant produced in one Q=[9(2 -dy)vg]  ux. (14)

time unit. For type | flows, in the continuous time limit and rqr the 2D baker map, the relation betwekrandx is given
in equilibrium, Q=«A*, with A* given by the nontrivial by d,=(k+2In2)/(x+In2), and in the limit of k—c, we
equilibrium solution(dA/dt=0) of Eq. (8). We thus get get

Q — (2gug)k™ 2%, (15)

Therefore, in the limit of high escape rat®— (2gvg)?
(since k' —1 for k— ). In 2D flows, the production per
Q is the productivity in unit time only in the limit of con- unit time goes to a finite limit, in contrast to the type | 3D
tinuous time reactions, that is, far— 0. case, where it goes to zero. This is an important difference
In the above expressiomn, is a function of«. In fact,  between the two regimes. We note that in this respect type Il
using Eq.(3) and the expression efpx)=4\%, we can 3D flows(with two expanding directionsehave in the same
eliminate\, and findd, as a function of<. The result is way as a 2D flow. Again, we have a qualitatively different
behavior for the 2D and 3D dynamics.
We conclude by commenting on how the above theory is
_k+61In2 related to realistic environmental flows. An isolated ocean
U e+2In2 (11) island is a barrier to ocean currents, and a wake is formed
behind the island. This wake corresponds to the interaction
region, and the flow can be considered open, because this
Substituting this expression in EGLO), we getQ directly as  interaction region is much smaller than the ocean as a whole.
a function of«: According to our results, active processes undergone by par-

Q= KkA* = (9(3 - dy)vg)* k2, (10)
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ticles carried by the watgifor instance, reproducing plank- case. This is quite independent of the particulars of the reac-
tion. Similar considerations apply to the atmosphere and the

ton or chemical reactions by pollutantsvill depend on

PHYSICAL REVIEW E 70, 026218(2004)

whether the flow is type | or type Il, and on the value of thewake behind an isolated mountain.

unstable dimensiod,. This in turn depends on the boundary

conditions of the flow, and has to be ascertained for each This work was supported by FAPESP and CNPq.
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