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We study the dynamics of active particles advected by three-dimensional(3D) open incompressible flows,
both analytically and numerically. We find that 3D reactive flows have fundamentally different dynamical
features from those in 2D systems. In particular, we show that the reaction’s productivity per reaction step can
be enhanced, with respect to the 2D case, while the productivity per unit time in some 3D flows goes to zero
in the limit of high mixing rates, in contrast to the 2D behavior, in which the productivity goes to a finite
constant. These theoretical predictions are validated by numerical simulations on a generic map model.
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In the last few years, there has been great interest in the
dynamics of active particles advected by open chaotic flows
[1]. Activity includes chemical activity, when reacting mol-
ecules are consumed in a chemical process to yield product
molecules; and also biological activity, when, for instance, a
unicellular organism makes copies of itself after taking in
food. There is a host of important physical and environmen-
tal processes involving active flows, including the depletion
of the ozone layer[2], the dynamics of pollutants in the
atmosphere[3], plankton population dynamics in the ocean
[4,5], early life evolution[6], and others. All these can be
considered open systems, because the region where activity
takes place(the interaction region) is much smaller than the
whole system.

The advection of particles by open chaotic flows displays
the phenomenon of chaotic scattering[7,8]. A chaotic scat-
tering dynamics is characterized by the presence of a fractal
invariant set of nonescaping unstable orbits[9]. This set is
called the chaotic saddle. It is known that the presence of a
chaotic saddle in the advection dynamics has dramatic ef-
fects on the reactive dynamics. These and other studies up to
now refer to two-dimensional(2D) flows. However, actual
flows are three dimensional, and only under artificial restric-
tions are they reasonably approximated by two-dimensional
models. Therefore, the full three-dimensional dynamics must
be taken into account in order to successfully understand
activity in realistic flows[15].

In this article, we develop a theory for the dynamics of
reactive particles in open hyperbolic(and, hence, generic)
three-dimensional flows. We find striking differences from
the corresponding results for 2D flows, showing that the 3D
character of the dynamics must not be disregarded. To sim-
plify the analysis of the different dynamical features found in
the 3D flows, we assume the flow to be periodic in time. In
this case, the dynamics can be reduced to a 3D volume-
preserving map with escapes(since we are dealing with open
flows). Because of its odd dimensionality, the number of
stable directions of the dynamics is different from the num-
ber of unstable ones: such maps are not Hamiltonian, even
though they preserve the three-dimensional volume. Since

volume is preserved, there are two nondegenerate cases of
hyperbolic 3D flows: those having one unstable and two
stable directions(we call these “type I”), and those with two
unstable and one stable directions(we call these “type II”).
To investigate the reaction dynamics in 3D flows, we de-
velop an analytic model. We show that the reacting particles
concentrate along the chaotic saddle’s unstable manifold. For
scales larger than the particle size, the distribution looks like
a fractal, with a fractal dimension equal to that of the un-
stable manifold. We show that the two types of dynamics
(type I and type II) correspond to very distinct types of re-
action dynamics. In particular, our theory predicts that the
production term in the reaction equation in the continuum
limit is proportional toAg, whereA is the amount of reactant,
andg is a coefficient that depends on the fractal dimension
of the unstable set. For type I flows, we show thatg can be
positive, whereas in the 2D case it is always negative. In this
case, the reaction kinetics of the 3D flow is qualitatively
different from that of the 2D flow. In particular, we show that
the reaction’s productivityper reaction stepcan be enhanced
in type I flows with respect to the 2D case, while the pro-
ductivity per unit timein some 3D flows goes to zero in the
limit of high mixing rates, in contrast to the 2D behavior, in
which the productivity goes to a finite constant. We generally
find that within the 3D case type I and type II flows have
very distinct reaction dynamics, with type II flows behaving
in most respects like 2D flows, whereas type I flows display
many unusual features. These results must be taken into ac-
count when studying the active dynamics of more realistic
systems.

We first present results on the purely advective dynamics
of a 3D flow, without considering activity for the time being.
We study the case of a time-periodic flow, the dynamics of
which can be reduced to a 3D stroboscopic map, as is usually
done in dynamical systems. In order that our results do not
depend on the particularities of the chosen model, we choose
to focus on a generic hyperbolic open volume-preserving 3D
map, which can be thought of as a generalization of the
well-known 2D open baker map. The structural stability of
our map rigorously guarantees that our results are generic,
for a large class of 3D flows(3D volume-preserving maps
for closed systems have been studied before[10]). The map
is defined in the unitxyzcube, and its action is shown in Fig.
1(a). We denote the map byM. One iteration ofM consists*Email address: amoura@if.usp.br
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of two actions. First, thex and y directions are uniformly
contracted by a factorl, with l,1/2, while thez direction
undergoes an expansion by a factor 1/l2, thereby conserving
volume. By this transformation, the unit cube turns into a
long thin parallelepiped with its long axis along thez axis.
Second, four pieces with unit height of this parallelepiped
are selected and put in the four corners of the cube(see Fig.
1). The pieces of the parallelepiped that are not selected are
discarded, and considered to have escaped. Formally,M is
written as

M:5 xn+1 = lxn + Bx,

yn+1 = lyn + By,

zn+1 = zn/l
2 + Bz,

6 s1d

where the additive factorsB depend on the value ofzn:

Bx = By = 0 if 0 ø zn , 1,

Bx = 1 −l, By = 0, Bz = − C if C ø zn , C + 1,

Bx = 1 −l, By = 0, Bz = − C if 2C ø zn , 2C + 1,

Bx = By = 1 −l, Bz = − 3C if 3C ø zn , 3C + 1, s2d

with C=s2ld−2. We could have defined the map more gener-
ally, with two distinct contraction factorslx and ly. The
general conclusions would be the same.

The mapM described by Eq.(1) has two contracting
directions and one expanding direction, and is therefore of
type I. We observe that for the inverse mapM−1, stable
directions turn into unstable ones, and vice versa. Therefore,
M−1 has one stable and two unstable directions, and it is of
type II. We thus conveniently handle the two generic types of
hyperbolic 3D maps with one single map and its inverse.

From Eq.(1) [see Fig. 1(a)], the stable manifold ofM is
a Cantor set of planes parallel to thexy plane, and the un-
stable manifold is a Cantor set of vertical segments. We can
visualize these manifolds by iteratingM forward a given
number of times for many initial conditions chosen randomly
within the unit cube and plotting the points that have not
escaped. Conversely, iteratingM backward gives a picture
of the stable manifold ofM. The results are shown in Figs.
1(b) and 1(c).

Let us consider now the unstable manifold ofM, de-
picted in Fig. 1(b). Since it is made up of vertical segments,
and since the expansion and contraction rates are uniform,
we can restrict ourselves to the intersection of the unstable
manifold with a horizontal plane. This is depicted in Fig.
1(d). In the limit of an infinite number of iterations, a well-
known Cantor set in the plane is formed[11], with fractal

(box-counting) dimension given byd̄=−2 ln 2/ lnl. The un-
stable set is the product of this set and a one-dimensional
segment, with dimension

du = 1 − 2 ln 2/lnl. s3d

Note thatdu is also the dimension of thestablemanifold of
M−1. A similar reasoning can be applied to the stable mani-
fold: it is the product of a Cantor set on a vertical line with a
plane. We findds=2−ln 2/ lnl. The chaotic saddle is the
intersection of the stable and unstable manifolds, and its di-
mension isdsaddle=−3 ln 2/ lnl. We see from the above that
duÞds, in contrast to the 2D case. Furthermore,ds and du
satisfy

1 , du , 3, 2, ds , 3. s4d

We note that the structure of the stable and unstable mani-
folds of the two types of flow for a generic open 3D volume-

FIG. 1. (a) Illustration of the action of one
iteration of mapM on the unit cube(the drawing
is not to scale). (b) Surviving points after two
iterations of the mapM, for l=0.35, with initial
conditions chosen randomly in the cube.(c) Same
as(a), but for the inverse mapM−1. (d) Intersec-
tion with a horizontal planesz=constd of the set
of surviving points after two iterations ofM.
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preserving map[and not only for map(1)] is topologically
similar to that shown in Fig. 1. Also, the inequalities(4) hold
in general.

We observe from Eq.(4) that in type II flows the dimen-
sion of the stable manifold[which is du in Eq. (4)] may be
less than 2. In this case, the stable manifold has generically a
null intersection with a one-dimensional curve, and thus a
1D scattering function(such as the escape time) is smooth,
even though there is a fractal invariant set. Ifdu.2, on the
other hand, a typical scattering function has a fractal set of
singularities[9]. This is a phenomenon analogous to the one
found in Hamiltonian chaotic scattering in three-degree-of-
freedom systems[12,13]. The transition point, at whichdu
=2, is given byl=lc=1/4. If the fluid is of type II, how-
ever, this transition does not occur.

We now consider what happens when the advected par-
ticles are active. We first derive an analytical model valid for
general hyperbolic 3D flows, and then we will use the map
(1) to corroborate our results. Reactions are implemented by
a discretization of space, following[14]. We initially choose
a regionR of space that contains the chaotic saddle, and
which we consider to be the interaction region. We then par-
tition R into cubic cells of sizes, which physically repre-
sents the reaction range or the particle size. Each of the ad-
vected active particles is located in one of the cells. For a
given particle in an arbitrary position inR, we consider it to
be localized at the center of the cell that contains it. When it
evolves in time through a 3D map, this particle is mapped to
another cell. If the mapping takes a particle outsideR, it is
considered to have escaped. If two particles are mapped to
the same cell, only one is considered to remain(coales-
cence). After advection, the particles undergo a sudden reac-
tion. We assume that all particles undergo a catalytic reac-
tion, which acts as an infection: if a given cell contains a
particle before the reaction, all neighboring cells will also
contain particles after the reaction. If an infected cell already
has a particle, it remains unaltered. The total dynamics of the
system is thus composed of advection and reaction. To fully
define the dynamics, we have to specify the reaction timet.
The reaction rate is given by 1/t. We assumet either to be
an integerm (the map is iteratedm times before the reaction
takes place) or to take values of the form 1/m (reaction takes
placem times in each iteration). The continuous time limit is
obtained by lettings, t→0 while keeping the reaction ve-
locity vR=s /t finite.

We consider first type I flows, with one unstable direction.
Let A0snd denote the volume of cells occupied by reacting
particles right after thenth reaction. Similarly,Atsnd is the
reactants’ volume right before thesn+1dth reaction. They are
related byAtsnd=e−nA0snd, wheren=kt is the decay rate,
andk is the escape rate by advection. ForM, k is given by
e−k=4l2. Due to the stretching along the unstable direction,
the particles rapidly accumulate into filaments about the
Cantor set of curves that makes up the unstable manifold.
The volumeA is given in terms of the average width« of the
filaments by

Atsnd = Hf«tsndg3−du, s5d

where the same notational conventions used forA hold for «,
and H is the Hausdorff measure of the unstable manifold
[11].

When reactions occur, the filaments are thickened by ap-
proximately s, yielding «0sn+1d=«tsnd+as, wherea is a
geometric factor that takes the curvature and overlapping of
the filaments into account. We are assuming that no new
reacting particles are entering the system from the outside,
and that the only source of new particles is the reaction itself.
Using this relation together with Eq.(5), we can write an
equation for the discrete time evolution of the volume:

Atsn + 1d = e−nhfAtsndg1/s3−dud + sgj3−du, s6d

with g=aH1/s3−dud. By requiring Atsn+1d=Atsnd=At
* , we

find the equilibrium value ofAt:

At
* = F sg

en/s3−dud − 1
G3−du

. s7d

From Eq.(7) we see thatAt
* scales withs asAt

* ,s3−du.
To verify this prediction, we simulate the advection-reaction
dynamics of map(1). Figure 2(a) shows the number of par-
ticles N as a function ofs for one value ofl. Equation(7)
predicts thatN,s−du. This is confirmed by numerical fitting
of the data of Fig. 2(a).

In the continuous limit,A is a continuous function of
space and time. By Taylor-expanding Eq.(6), we get a dif-
ferential equation forA, the reaction kinetic equation

dA/dt = − kA + gs3 − dudvRAg, s8d

where the coefficient of the power law isg=s2−dud / s3
−dud. The first term in Eq.(8) is due to the escape, and the
second term is the source term, which depends on the geom-
etry of the unstable manifold. Ifdu.2, theng,0, whereas
if du,2, g.0. In the two-dimensional case, only the case
g,0 is possible, and the source term in Eq.(8) is singular
and diverges forA→0, giving rise to the so-called dynami-
cal catalysis[14]. The caseg.0 is uniquely three dimen-
sional, with no counterpart in 2D flows. In this case the
source term vanishes asA→0. In the case of our map(1),
the crossing point between the two behaviors is atl=lc
=1/4, thesame at which scattering functions ofM−1 be-
come fractal. This transition can be understood from the be-
havior of the area of the two-dimensional boundary separat-
ing the region filled with particles from the region devoid of
particles. This area determines the efficiency of the dynami-
cal catalysis. It can be shown that in the limit asA→0 this
area vanishes whendu,2, and it diverges whendu.2.

To understand better the consequences of this transition
from g,0 to g.0, we turn our attention to the productionP
per reaction step, defined as the difference betweenA0sn
+1d andAtsnd, after dynamical equilibrium is reached. It is
straightforward to show thatP=sen−1dAt

* [14]. In Fig. 2(b),
the dependence ofP on n is plotted for bothdu,2 and
du.2. For n!1, from Taylor expansion, we find thatP
scales as

P , ndu−2. s9d

From the above, in the limitn→0, or equivalently fort
→0 (high reaction rate), P→0 if du.2, andP→` if du,2.
Thus,du=2 separates two very different dynamical regimes.
We emphasize that this occurs only in 3D flows.
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We verified Eq.(9) through simulation, as is shown in
Figs. 2(c) (for du.2) and 2(d) (for du,2), whereP is cal-
culated for several values ofn for the map(1). The power-
law relation predicted by Eq.(9) is verified quantitatively, to
within numerical errors. There is thus an enhancement of the
reaction’s productivity per reaction step asn→0, which is an
exclusively three-dimensional phenomenon, and which is not
found in 2D flows.

The same derivation can be applied, with practically no
changes, to type II flows. Type II flows, however, have an
unstable manifold dimension which is always greater than 2
[from Eq. (4)] and therefore behave like 2D flows.

Another important quantity is the productivityQ per unit
time, which is the amount of new reactant produced in one
time unit. For type I flows, in the continuous time limit and
in equilibrium, Q=kA*, with A* given by the nontrivial
equilibrium solutionsdA/dt=0d of Eq. (8). We thus get

Q = kA* = sgs3 − dudvRd3−dukdu−2. s10d

Q is the productivity in unit time only in the limit of con-
tinuous time reactions, that is, fort→0.

In the above expression,du is a function ofk. In fact,
using Eq. (3) and the expression exps−kd=4l2, we can
eliminatel, and finddu as a function ofk. The result is

du =
k + 6 ln 2

k + 2 ln 2
. s11d

Substituting this expression in Eq.(10), we getQ directly as
a function ofk:

Q = S 2gvRk

k + 2 ln 2
Dh

ks2 ln 2−kd/sk+2 ln 2d, s12d

where h=2k / sk+2 ln 2d. In the limit of high escape rate
sk→`d, we get

Q → s2gvRd2k−1. s13d

Thus, ask→`, the production in unit time decreases to zero
as 1/k, in the case of a type I 3D flow(with two contracting
directions).

In the case of 2D flows, instead of Eq.(10) we have the
following equation for the production per unit time:

Q = fgs2 − dudvRg2−dukdu−1. s14d

For the 2D baker map, the relation betweendu andk is given
by du=sk+2 ln 2d / sk+ln 2d, and in the limit ofk→`, we
get

Q → s2gvRd2kln 2/k. s15d

Therefore, in the limit of high escape rate,Q→ s2gvRd2

(sincek1/k→1 for k→`). In 2D flows, the production per
unit time goes to a finite limit, in contrast to the type I 3D
case, where it goes to zero. This is an important difference
between the two regimes. We note that in this respect type II
3D flows(with two expanding directions) behave in the same
way as a 2D flow. Again, we have a qualitatively different
behavior for the 2D and 3D dynamics.

We conclude by commenting on how the above theory is
related to realistic environmental flows. An isolated ocean
island is a barrier to ocean currents, and a wake is formed
behind the island. This wake corresponds to the interaction
region, and the flow can be considered open, because this
interaction region is much smaller than the ocean as a whole.
According to our results, active processes undergone by par-

FIG. 2. (a) NumberN of occu-
pied cells in the equilibrium distri-
bution as a function of the inverse
of the grid sizes, for l=0.35;
from the slope we get a dimension
du=2.31±0.01, which agrees with
the theoretical valuedu=2.32 ob-
tained from Eqs.(3). (b) Plot of
the n-dependent part of the theo-
retical productionP, for l=0.15
(upper curve) and l=0.35 (lower
curve). (c) Production obtained
from simulation, as a function of
n, for l=0.35, that is, fordu.2;
the slope gives P,n0.35±0.02,
which compares well with the the-
oretical value 0.32 of the coeffi-
cient, from Eqs.(3) and (9). (d)
Same as(c), with l=0.15 anddu

=1.73,2; the slope gives a power
law with a coefficient
−0.23±0.04, which is close to the
theoretical value of −0.27.
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ticles carried by the water(for instance, reproducing plank-
ton or chemical reactions by pollutants) will depend on
whether the flow is type I or type II, and on the value of the
unstable dimensiondu. This in turn depends on the boundary
conditions of the flow, and has to be ascertained for each

case. This is quite independent of the particulars of the reac-
tion. Similar considerations apply to the atmosphere and the
wake behind an isolated mountain.
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